We consider the tile self-assembly model and how tile complexity can beeliminated by permitting the temperature of the self-assembly system to beadjusted throughout the assembly process. To do this, we propose noveltechniques for designing tile sets that permit an arbitrary length $m$ binarynumber to be encoded into a sequence of $O(m)$ temperature changes such thatthe tile set uniquely assembles a supertile that precisely encodes thecorresponding binary number. As an application, we show how this provides ageneral tile set of size O(1) that is capable of uniquely assemblingessentially any $n\times n$ square, where the assembled square is determined bya temperature sequence of length $O(\log n)$ that encodes a binary descriptionof $n$. This yields an important decrease in tile complexity from the required$\Omega(\frac{\log n}{\log\log n})$ for almost all $n$ when the temperature ofthe system is fixed. We further show that for almost all $n$, no tile systemcan simultaneously achieve both $o(\log n)$ temperature complexity and$o(\frac{\log n}{\log\log n})$ tile complexity, showing that both versions ofan optimal square building scheme have been discovered. This work suggests thattemperature change can constitute a natural, dynamic method for providing inputto self-assembly systems that is potentially superior to the current techniqueof designing large tile sets with specific inputs hardwired into the tileset.
展开▼
机译:我们考虑了瓷砖自组装模型,以及如何通过允许在整个组装过程中调整自组装系统的温度来消除瓷砖的复杂性。为此,我们提出了一种新颖的技术来设计图块集,该图块集允许将任意长度的$ m $个二进制数编码为一系列温度变化的$ O(m)$值,从而使该图块集唯一地组装一个超级块,精确地编码相应的二进制数。作为一个应用程序,我们展示了它如何提供大小为O(1)的通用拼贴集,该拼贴集能够唯一地基本上组装任何$ n \乘以n $的正方形,其中,组装后的正方形由长度为$ O(\ log n的温度序列)确定。 )$编码$ n $的二进制描述。当系统温度固定时,对于几乎所有$ n $,这都会从所需的$ \ Omega(\ frac {\ log n} {\ log \ log n})$显着降低瓦片复杂度。我们进一步表明,对于几乎所有的$ n $,没有任何分块系统可以同时达到$ o(\ log n)$温度复杂度和$ o(\ frac {\ log n} {\ log \ log n})$分片复杂度,表明已经发现了两种最佳的正方形建筑方案。这项工作表明,温度变化可以构成一种自然的,动态的方法,用于向自组装系统提供输入,这可能优于当前的设计大型瓷砖集的技术,而具体输入则硬连接到瓷砖集中。
展开▼